Kinematic earthquake rupture inversion in the frequency domain
نویسندگان
چکیده
S U M M A R Y We develop a frequency-based approach to earthquake slip inversion that requires no prior information on the rupture velocity or slip-rate functions. Because the inversion is linear and is performed separately at each frequency, it is computationally efficient and suited to imaging the finest resolvable spatial details of rupture. We demonstrate the approach on synthetic seismograms based on the Source Inversion Validation Exercise 1 (SIV1) of a crustal Mw 6.6 strike-slip earthquake recorded locally. A robust inversion approach is obtained by applying a combination of damping, smoothing and forcing zero slip at the edge of the fault model. This approach achieves reasonable data fits, overall agreement to the SIV1 model, including slip-rate functions of each subfault, from which its total slip, slip time history and rupture velocity can be extracted. We demonstrate the method’s robustness by exploring the effects of noise, random timing errors, and fault geometry errors. The worst effects on the inversion are seen from errors in the assumed fault geometry.
منابع مشابه
Nonlinear dynamic rupture inversion of the 2000 Western Tottori, Japan, earthquake
[1] We have developed a systematic nonlinear inversion method for estimating rupture propagation and the underlying dynamic parameters for large historical earthquakes. The rupture modeling is carried out using a three-dimensional finite-difference method, and the inversion is implemented by a neighbourhood algorithm, minimizing the misfit between computed and observed near-fault seismograms. W...
متن کاملEstimation of kinematic source parameters and frequency independent shear wave quality factor around Bushehr
In this paper, the shear wave quality factor and source parameters in the near field are estimated by analyzing the acceleration data in Zagros region. Accelerograms recorded by Building and Houses Research Center strong ground motion network have been used. The data have been considered with the magnitude of 4.7 to 6.3 collected from 1999 to 2014. In this approach, the theoretical S-wave displ...
متن کاملSource rupture process of the 2016 central Tottori, Japan, earthquake (MJMA 6.6) inferred from strong motion waveforms
The source rupture process of the 2016 central Tottori, Japan, earthquake (MJMA 6.6) was estimated from strong motion waveforms using a multiple-time-window kinematic waveform inversion. A large slip region with a maximum slip of 0.6 m extends from the hypocenter to the shallower part, caused by the first rupture propagating upward 0–3 s after rupture initiation. The contribution of this large ...
متن کاملKinematic Inversion of Physically Plausible Earthquake Source Models Obtained from Dynamic Rupture Simulations
One approach to investigate earthquake source processes is to produce kinematic source models from inversion of seismic records and geodetic data. The setup of the inversion requires a variety of assumptions and constraints to restrict the range of possible models. Here, we evaluate to what extent physically plausible earthquake scenarios are reliably restituted in spite of these restrictions. ...
متن کاملShort Note Dynamic Rupture Simulation of the 2008 Mw 7.9 Wenchuan Earthquake with Heterogeneous Initial Stress
The rupture process and tectonic surroundings of the 2008 Wenchuan, China, earthquake are both complex in a way that might be related to the heterogeneous stress field of the Longmen Shan region. In this study, we construct dynamic models with heterogeneous initial stress to reproduce a kinematic inversion result by Wen et al. (2012) and investigate the physical mechanisms of the variable slip ...
متن کامل